
RTI COMMON SOFTWARE
FRAMEWORK

Michael Hooks, Rich Rybacki, Charles
Koplik

TASC, Inc.
55 Walkers Brook Drive

Reading, MA 01867
cmkoplik@tasc.com

KEYWORDS
Run-time Infrastructure (RTI), High Level Architecture (HLA),
ORB, middle-ware, Framework, CORBA, IDL, legacy simulation,

service repository, exercise management, object management,
interest management, ownership management, FOM management

ABSTRACT
The RTI Common Software Framework was
developed for STRICOM as part of the HLA Platform
Proto Federation project sponsored by DMSO. The
Common Software is an object-oriented framework
that supports the utilization of the Run-time
Infrastructure by Federate simulations. It supports the
structured development of RTI support services
which are common between multiple federates (or
may become common at some future date). The
structured environment maximizes reuse potential for
federate specific software developed on top of the
HLA. The ability to "objectize" the underlying
functionality of the RTI empowers the user to
customize behavior in specific areas. The granularity
of the customized services is arbitrary, dependent on
the users or federates needs, and promotes an
incremental development process in which small
chunks of functionality can be easily modified
without impacting the entire system. The Common
Software simplifies federate interoperability with the
HLA, providing an open object-oriented framework
which supports the plug & play of services. Services
provide functionality to the federate software for RTI
actions such as interest management and time
management.

1.0 OVERVIEW
The Platform Protofederation (PPF) is tasked by the
Architecture Management Group (AMG) with
developing an experimental Federation Execution in
conjunction with the High Level simulation
Architecture (HLA). As part of this development, we
identified a common software approach to provide
interoperability with the Run Time Infrastructure
(RTI). The common software activity can be
considered one of the PPF experiments being
conducted under the guidance of US ARMY
STRICOM and Defense Modeling and Simulation
Office (DMSO). The purpose of the software is to
provide a common interface kit for member
applications. The HLA Common Software
Framework (CSF) allows maximum application
interoperability and flexibility while minimizing the
cost of development and maintenance due to a
common structured architecture that promotes
reconfigurability (see Figure 1).

1.1 Common Software Objectives
The Component Service Framework supports the
ability to override and extend the simulation behavior
through the “plug & play” of services. Services are
able to provide functionality to simplify simulation
model development and interoperability using the
High Level Architecture. The services are able to
support CORBA compliant distributed methods,
promoting the concept of reconfigurable distributed
components. Legacy software systems are connected
to the RTI using common services that simplify the
interface requirements, aggregate RTI methods, and
extend behavior using a flexible and extensible
service oriented framework.

D
ec

re
as

in
g

C
om

pl
ex

ity

Decreasing Integration

 Cost

PPF

Common

Software

RTI

Figure 1 Common Software Provides a Layer that
Simplifies the Use of HLA Services

The flexible configuration of services can instigate the
evolutionary development of the software used to
support the HLA, as new service classes can easily be
created to provide additional or different behavior.

1.2 Application to Platform Proto Federation
The Common Software Framework was used to
support three diverse Federate members (see Figure
2): BDS-D (a SIMNET tank simulator, BFTT
(embedded simulators for carrier, destroyer and
weapons) and JTCTS (engineering models for live
aircraft and weapons).

BDS-D

PPF Common Software

HLA Run-time Infrastructure

CCTT SAFBFTT JTCTS

Ada to C++
HLA Gateway

SIMNET
to HLA
Gateway

HP to Sun
Client/Server
HLA Interface

HLA/DIS interface
architecture
(shared memory,
entity processor,
network manager)

Object-
Oriented
Service

Framework

Figure 2 Use of Common Software in Proto
Platform Federation Experiment

The integration of the RTI with these legacy systems
presented conceptual, as well as implementation
difficulties (object orientation, CORBA semantics,
process management). The Common Software
simplified the software interface and provided
additional common functions (e.g., database access to
object and attribute information). These service
features will be described in the following sections.

2.0 RTI COMMON SOFTWARE

2.1 Simulation Framework
The Common Software Framework is build on top of
TASC’s Simulation Framework and is really an
extension of that framework to the RTI. The
Simulation Framework provides a light-weight,
CORBA-based communications infrastructure. The
Simulation Framework provides a rich set of services
for application and GUI components:

• ORB connectivity
• Multi-platform distributed component processing
• Component model encapsulation
• Simulation composition support (build models

from object libraries using selection and
composition)

• Hierarchical interface typing for maximum
software reuse

• Component parameter initialization and data
collection support (data probes)

• Database support (object persistence for
component library)

• GUI support (multiple GUIs for scenario
development, run-time control/analysis)

The TASC Simulation Framework was the first
CORBA-based simulation framework developed for
DoD (USA TACOM). Figures 3 and 4 show the
major component base classes and the various
managers that comprise the Framework Manager.

Component

Application
Component

GUI
Component

Framework
Component

Framework
Managers

GUI
Managers

Represents a generic simulation object that can be
created, initialized, executed, and managed.

Application-specific
and configurable
class hierarchies

GV
AV
C4I
DI
EOSSA

Collection of component managers that
provide services for a dynamic and recon-
figurable simulation environment (access,
configure, execute, control, modify, save)

Collection of managers
that provide services to
support application-specific
graphical user interfaces

Figure 3 Simulation Framework Component
Class Hierarchy

The Component class hierarchy is provided to
support common interface and implementation
requirements of the components. Framework manager
classes provide structure to the component
architecture through intelligent agents that provide
basic application support (e.g., creation,
configuration, component discovery, deletion). The
low-level support classes assist the operations of the
component and framework classes, reuse of low-level
classes simplifies reuse of higher-level classes.

The component class inheritance hierarchy requires
any component class to inherit from the existing class
hierarchy. The Component class is the ultimate base
class, and provides the most basic level of abstraction
that can be used for the components. A further
specialization of the Component class for application
components is provided by the Application
Component class. Additional specialization of
component classes used for particular application
domains can be created through classes that inherit
from the Application Component class.

The top of the class hierarchy also branches into the
GUI component class used for the GUI (Graphical
User Interface) components and the Framework
Component used for all framework components. The
GUI component and Framework Component classes
become further specialized to support manager
classes. Manager classes (either GUI or framework)
typically represent high level components that
aggregate behavior for a set of subservient
components. Developers of model components or

Component

Type ID Host Name

Attributes Server Requests

Type: classification mechanism
used to define the interface
capability of the component and the
implementation name

ID: identification mechanism for
uniquely distinguishing a
particular component

Host: location where component
exists (computer, cluster)

Attributes: definition and
manipulation of model initialization
parameters

Composition Manager: specifies
notional hierarchy relationship

Analysis Elements: definition
and selection of accessible data

Server Requests: definition and
access to servers required by
component

get type
set type

get ID
set ID

get name
set name

Analysis Elmts.

get server requests
set server requests
bind server

Composition

attach Child
detach Child
set Parent
get Containment
 Hierarchy

element exists
get # of elements
get element
get link to component
compute when to push
push data to component

get attribute
set attribute
check validity

Figure 4 Simulation Framework Component
Class Composition

GUI components can create a class hierarchy that
extends this hierarchy as needed for their particular
application.

2.2 Common Software Base Class
The base class for the components used in the PPF
Experiment inherits from the Application
Component. This class will be extended according to
the particular needs of the federation member.

The component create macros provide the ability for
a framework manager to create an instance of the
component, and tie the component implementation to
the CORBA IDL interface. For the PPF components,
the IDL interface that is implemented is named
sim_ambassador, as specified by the RTI software.
The service declaration macro attaches the service
dispatcher to the component class, where the
ServiceName is the unique name of the service class.

The component class can contain methods and
members specific to the particular federation
member requirements and existing designs. The
definition of the component class is illustrated by the
following example. The service creation macro creates
the service dispatcher and instantiates the appropriate
service class. The component service becomes
registered with the component's service manager and
the component service is initialized with information
from the component.

The constructor for the component class performs
several standard operations that are required by the
framework. Only the void constructor is used by the
framework creation process, general purpose
initialization mechanisms can be used to adjust class
parameter values. The first constructor operation,
defineName, is used to identify the implementation
name of the component. Currently only the name of
the component class is required, but advanced
services can require run-time typing and identification
capabilities (which are supported by the base class).
Service creation macros instantiate a service object,
connect the object to the base class, and initialize the
service.
A component class developed for the HLA can be
used to represent different levels of federation
object aggregation. A single component class can be
used to manage all of the federation objects that are
simulated in a particular legacy system. This is the
suggested model to be used by the federation
members in order to simplify integration and initially
concentrate on specific services needed for these types
of simulation components. In the future, the
component class structure could be used to create a
separate component instance for each federated object.

Legacy code is connected to the framework through a
component class, specifically in the case of the PPF a
C++ class derived from the Common Software base
class. The base component class also contains "static
extern C" functions that can be accessed with the C
and Ada languages.
2.3 Component Services
Extending the application class structure through
inheritance can be used to specialize components
according to their external or internal service interface
requirements. The difficulty with this approach is that
it leads to a complicated, multiply inherited, class
structure. The Common Service Framework
implements a forwarding process for services that can
be used to perform component specialization with a
flexible mechanism. Services connected to a
component class are able to override the behavior of
existing methods, as well as extend component
behavior with new methods.

Attaching a component service can modify an
existing component in several ways; overriding
existing behavior of the class definition and adding
new behavior that is accessible to the class itself or
other application components. Overriding behavior is
a fundamental characteristic of Object-Oriented
programming languages. The service can also provide
new methods that simplify operations that are
required by the component class (or legacy code
attached to the component). The service methods can
also be accessed by other components in the
application.

The service attachment mechanism allows the
component developer to choose which services are
needed based on the component requirements. The
developer is able to easily switch between common
services to access different behavior. Common
services are developed with a similar interface
following a structure that promotes reuse. The
services can be viewed as existing in a repository
which is accessed during the component
configuration process.

Each component service is implemented as a class
which ultimately inherits from the base class
Component Service. The Component Service class
provides the necessary support to connect the
component service to the component through the
service dispatch mechanism. The base class also
contains a reference to the component that "owns" the
service, this reference can be used to invoke methods
on the component (see Figure 5).

The common base class for all component services
promotes a structured development style which will
ensure that common support features can be easily
added. Some of the common features that are

implemented in the Component Service class is the
reference to the component that "owns" the service, a
typing and identification mechanism, and an
initialization mechanism.

Component

Common Software
Component

Exercise Mgmt. Service
Process Mgmt Service
Time Mgmt Service
Object Mgmt Service
FOM Mgmt Service
Interest Mgmt Service
Ownership Mgmt Serv.

Service
Dispatch

Component
Service

PPF Component
Service

Federation Execution
RTI Executive
RTI ambassador
Simulation Ambassador

Service
ID

Service Type

Service Status

Component ID

Component
Type

Figure 5 Component Service Class Diagram

3.0 PPF Common Services
A set of RTI common support services was
developed specifically tailored to the needs of the
Federates participating in the Platform Proto
Federation. A subset of these will be delineated in
the following sections.

3.1 Exercise Management Services

3.1.1 Summary
The Exercise Management Service provides access to
the HLA federation management capabilities. This
functionality includes creating, joining, resigning,
and destroying federations. The HLA query
mechanism is also supported. It is expected that this
service class will also support the pause, resume,
save, and restore mechanisms when they are
implemented within the Run-Time Infrastructure.

This service class will automatically bind to the
rti_executive server when the user attempts to either
create or join a federation execution. Prior to
starting the rti_executive server, there are several
configuration items that can be defined by the
user. These items can use default values if the
arguments are not provided to the create or join
method invocations. For several of the configuration
items, system environment variables can also be used
to define behavior.

3.1.2 Class Definition
• Key Class Members

– Federation configuration items.

• Key Class Methods

– createFederation
– Attempt to create a named federation hosted to a
particular machine, if the federation already exists the
service will proceed by catching the exception.
– joinFederation
– Allow the federate to join an existing federation, the
rti_executive and rti_ambassador may be hosted on
different machines.
– General Access Methods
– Obtain or set configuration information regarding
host names, RTI server name, RID filename.

3.1.3 Key Features
• Configuration Behavior

– Federation Execution easily customized through
method interface, default arguments, or environment
variables.

• RTI Abstraction

– Simple abstraction to RTI federation management
services.
– Hides CORBA server binding operations.
– Supports proper handling of RTI exceptions.

3.1.4 Associations
• rti_executive; create, join, destroy

• rti_ambassador; resign, pause, resume, ...

3.2 FOM Management Service

3.2.1 Summary
The Federation Object Model (FOM) Management
Service maintains a database of active classes,
attributes, and interactions within the particular
federate. Class definitions will contain relationships
to the attributes used to describe a FOM class. The
FOM classes, attributes, and interactions use a dual
identification mechanism consisting of a character
string and a unique integer. The FOM Management
Service provides access to the mapping between the
two representations.

A database of active objects is also maintained by
the FOM Management Service. This database will
contain the RTI based ID for each object and provide
the connection to the FOM class definition associated
with the object. The mapping between the RTI
object ID and the class definition is currently not
fully supported by the RTI.

3.2.2 Class Definition
• Key Class Members

– fomObjectList

FOM class definitions.
–fomInteractionList
 FOM interaction definitions.
–objectIdList
Class and object mappings.

• Key Class Methods

– get[]ID
Obtain integer identification from string based name.
– get[]Name
Obtain string based name from integer identification.
– getObjectIds
Obtain list of active objects matching class name.
getObjectClass
Obtain class name from RTI object ID.

3.2.3 Key Features
• Dynamic Behavior

– The FOM Management Service database is
constructed with only the items utilized by the
federate simulation.
– Service could be extended to process the RID file,
and provide more efficient type checking.

• RTI Name and ID Mapping

– RTI only provides mapping from the string name
to the unique integer ID, the FOM Management
Service is able to provide the reverse capability.
– Service could be extended to support class
hierarchy evaluation (RTI needs to provide class
narrowing capability).

• FOM Definition Compile-Time Type Safety

– FOM Management Service has ability to examine
compile-time type safety by having the Common
Software clients use classes which encapsulate RTI
run-time typing mechanisms.

3.2.4 Associations
• tsFomObject

– Support Class; class name, class ID, and list of
attributes.

• tsFomInteraction

– Support Class; interaction name, interaction ID,
active flag.

• tsFomAttribute

– Support class; attribute name, attribute ID, active
flag.

3.3 Object Management Service

3.3.1 Summary
The Object Management Service supports class
attribute and interaction publications and
transmissions for the High Level Architecture (HLA).
Individual objects must be defined by the Federation
Object Model (FOM) in terms of the class name and
the list of attributes. A client of this service will first
state its publication intentions in terms of classes and
interactions. Then individual objects can be created
and updates to the attributes can be made.
Interactions are asynchronous events that can be sent
along with a set of parameters at any time during the
simulation.

A database of published objects is maintained by
the service class in order to simplify client
operations. The Object Management Service is able
to maintain the latest values of the attributes, only
sending values to the RTI that have changed. The
database also maintains the RTI update requirements
for each object, i.e., the RTI may not request an
object, attribute , or interaction to be updated.

3.3.2 Class Definition
• Key Class Members

– proxyList
List of declaration proxy objects.
– publishedInteractionList
List of published interactions.

• Key Class Methods

– publishClass
Define intentions to publish objects belonging to a
particular class, where publication results in the
update of attribute values.
– publishInteractions
Define intentions to publish interactions.
– createObject
Instantiate an object with a particular set of named
attributes (no values).
– updateObject
Provide list of attribute values for RTI update, Object
Management Service determines whether the values
have changed and are requested by the RTI prior to
transmission.

3.3.3 Key Features
• Publication Database

– Maintains previous attribute values sent to RTI, to
avoid redundant information being sent.
– Maintains RTI update status on objects.
– Ability to easily extend to persistent database.

• Attribute and Value Support Classes
– Hides CORBA implementation details (e.g.,
unbounded sequences of ‘any’s).
– Extensible Object-Oriented design.

• RTI Abstraction

– RTI invocations are implemented with
considerations for Platform level simulations, (RTI
methods can be aggregated, extended, or modified).

3.3.4 Associations
• FOM Management Service

– String name to ID mapping queries.

• tsDeclarationProxy Support Class

– Hash tables of object attribute and interaction
publications.
– List of most recently published attributes.

• tsAttribute, tsValue, tsInteraction Support
Classes

– Simplifies RTI integration with CORBA
implementation details.
– Encapsulation of RTI transmitted elements into
objects.

3.4 Interest Management Service

3.4.1 Summary
The Interest Management Service supports the
subscription and reflection mechanisms of the Run-
Time Infrastructure (RTI) by enabling the client to
express interest in class attributes and interactions.
The subscription process instructs the RTI to
only reflect attribute values or send interactions
that match the interest declarations. Currently the
RTI only supports class based filtering (i.e.,
subscription to attributes belonging to a particular
class or interactions from a particular class). The
interest declarations are forwarded to the federation
execution process which is under control of the RTI.

The Interest Management Service is also capable
of buffering the reflected attribute values and
interaction sent from the other federates. The
buffering mechanism will maintain a collection of
objects, and their corresponding attribute values,
matching the interest criteria. As new values are
reflected from the RTI, the old values will be
overwritten. Interactions sent to the federate will also
be captured in a list. Clients of the Interest
Management Service can access the object attribute
and interaction parameter data using various query
mechanisms.

3.4.2 Class Definition
• Key Class Members

–interestProxyList
List of interest proxy objects.
–interactionInterestList
List of interaction interests.
–objectList
List of received objects.
–interactionList
List of received interactions.

• Key Class Methods

– addClassInterest
Define interest in a particular class, providing the list
of named attributes that should be reflected by the
RTI.
– addInteractionInterest
Define interest in a particular interaction.
– queryObjectsByName
Obtain collection of objects matching a particular
class name, where each object provides access to the
list of current attribute values.

3.4.3 Key Features
• Simulation Process Support

– Intercepts RTI attribute and parameter
transmissions to collate and package data within a
single processing interval.

• Reflected Value and Interaction Database

– Transient database collects all attribute reflections,
providing object based query mechanism.
– Queue of interactions.

3.4.4 Associations

• FOM Management Service

– String to ID mapping queries.

• tsInterestProxy Support Class

– Hash tables of attribute and interaction interests.

• tsAttribute, tsValue, tsInteraction Support
Classes

– Simplifies RTI integration with CORBA
implementation details.
– Encapsulation of RTI transmitted elements into
objects.

4.0 SUMMARY

The RTI Common Software Framework supports the
application of the RTI to the broad and diverse set of
users that is intended for it by the AMG. Since the
RTI must be very general (to support all kinds of
simulation uses), it has to provide only a base set of
primitive capabilities from which a broad variety of
applications can then be developed. The Common
Software Framework demonstrates how these
primitive services can be extended through the use
object-oriented middle-ware (much as X-Windows
GUI builders provide class libraries that extend the
X-Windows primitives). The Common Software
facilitates the use of the RTI by the broad community
of simulation developers in the following ways:

• Manage Complexity
− RTI/HLA implementation issues solved in a

central location
• Minimize Integration Time

− Interface can be tailored to specific needs of
the platform simulation

− Results in lower development costs
• Maximize Extensibility

− Service Repository: allows users to Plug and
Play alternative implementations

− Object-Oriented Methodology allows
reusability of services by inheritance --
powerful new services can be created
leveraging off of already existing services

This “middle-ware” concept has been successfully
tested by three members of the Proto Platform
Federation in its recent experiments -- leveraging the
benefits of a common solution to several simulation
problems (e.g., keeping a database of objects and
attributes).

Many of the other HLA Proto Federations also found
themselves, by necessity, developing a form of
middle-ware for the RTI (although, unlike the PPF,
they had not been specifically tasked to investigate
this issue) and the STOW ‘97 program has always
assumed the need for an RTI Support Layer. Future
work by the community is needed to assess the most
appropriate approaches for providing this support
layer to the RTI -- as this will be essential in order to
achieve the benefits hoped for from a common High
Level Architecture for simulation.

6.0 ACKNOWLEDGEMENTS

The authors would like to thank DMSO and
STRICOM for supporting this research activiity. We
wish to particularly recognize the support of the
STRICOM PPF Program Manager, Susan Harkrider,
and Lt. Col. Steven Hicks, who suggestions and
efforts on behalf of the Platform Proto Federation effort

made the project a success. Finally, we wish to
acknowledge the contributions of Chris Deschenes
and Stephen Bachinsky for their work in supporting
the design and development of the Common
Softwere.

